腾讯Angel是腾讯发布一款开源高性能分布式计算平台,可以更加高速精确的处理数据材料,其能力超过各类同行软件,如果你有兴趣,就来陈三网下载,学习源码吧!
功能特色
网络优化
Angel的网络解决方案使用的是香港科技大学的Chukonu。借助Chukonu,Angel可以通过网络流量再分配的方式,解决半同步的运算协调机制SSP中可能出现的快节点等待慢节点的问题,减少了窗口空闲等待时间。
整体架构
Angel的整体架构参考了谷歌的DistBelief,这是一种最初为了深度学习而设计、使用了参数服务器来解决巨大模型在训练时更新问题的架构。参数服务器同样可用于机器学习中非深度学习的模型,如SGD、ADMM、LBFGS的优化算法在面临在每轮迭代上亿个参数更新的场景中,需要参数分布式缓存来拓展性能。
软件优点
1.Angel的核心设计理念围绕模型。它将高维度的大模型切分到多个参数服务器节点,并通过高效的模型更新接口和运算函数,以及灵活的同步协议,实现机器学习算法的高效运行
2.Angel基于Java和Scala开发,能在社区的Yarn上直接调度运行,并基于PS Service,支持Spark on Angel,未来将会支持图计算和深度学习框架集成。
3.Angel采用的Parameter Sever架构相比其它类型的架构更适合解决巨大模型中的参数更新问题;实际运行中相比参数更新方面有单点瓶颈的Spark平台,Angel能够取得成倍的性能优势,而且模型越大优势越明显。
4.腾讯开源的Angel给头疼于大规模机器学习模型计算的业内人员提供了一个新选择。发展自己技术、扩大自己的平台的同时,腾讯也承诺未来的开源力度只会越来越大。
5.围绕Angel,腾讯还建立了一个小生态圈,可以支持Spark之上的MLLib,支持上亿的维度的训练;也支持更复杂的图计算模型。
免责声明:本站提供的一切软件、教程和内容信息仅限用于学习和研究目的;不得将上述内容用于商业或者非法用途,否则,一切后果请用户自负。本站信息来自网络收集整理,版权争议与本站无关。您必须在下载后的24个小时之内,从您的电脑或手机中彻底删除上述内容。如果您喜欢该程序和内容,请支持正版,购买注册,得到更好的正版服务。我们非常重视版权问题,如有侵权请邮件与我们联系处理,我们将尽快删除相关内容。